Modular Representation Theory of Blocks with Trivial Intersection Defect Groups

نویسندگان

  • JIANBEI AN
  • CHARLES W. EATON
چکیده

We show that Uno’s refinement of the projective conjecture of Dade holds for every block whose defect groups intersect trivially modulo the maximal normal p-subgroup. This corresponds to the block having p-local rank one as defined by Jianbei An and Eaton. An immediate consequence is that Dade’s projective conjecture, Robinson’s conjecture, Alperin’s weight conjecture, the Isaacs– Navarro conjecture, the Alperin–McKay conjecture and Puig’s nilpotent block conjecture hold for all trivial intersection blocks. Mathematics Subject Classification (2000): Primary 20C20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somerecenttrendsin Modularepresentationtheory

Introduction The study of modular representation theory was in some sense started by L.E. Dickson [11] in 1902. However, it was not until R. Brauer [7] started investigating the subject that it really got off the ground. In the years between 1935 and his death in 1977, he almost single-handedly constructed the corpus of what is now regarded as the classical modular representation theory. Brauer...

متن کامل

Core partitions and block coverings

A number of new results about core partitions have been proved recently. ([2],[3], [9], [12]) For s ∈ N an s-core is by definition an integer partition without hooks of length s. This type of partitions first occurred in modular representation theory of symmetric groups, where s-cores label s-blocks of defect 0 in the case where s is a prime. In the study of relations between blocks for differe...

متن کامل

THE 2 - BLOCKS OF DEFECT 4 227 Proof

We show that the major counting conjectures of modular representation theory are satisfied for 2-blocks of defect at most 4 except one possible case. In particular, we determine the invariants of such blocks.

متن کامل

A Local Conjecture on Brauer Character Degrees of Finite Groups

Recently, a new conjecture on the degrees of the irreducible Brauer characters of a finite group was presented in [16]. In this paper we propose a ’local’ version of this conjecture for blocks B of finite groups, giving a lower bound for the maximal degree of an irreducible Brauer character belonging to B in terms of the dimension of B and well-known invariants like the defect and the number of...

متن کامل

Some bounds on unitary duals of classical groups‎ - ‎non-archimeden case

‎We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups‎. ‎Roughly‎, ‎they can show up only if the‎ ‎central character of the inducing irreducible cuspidal representation is dominated by the‎ ‎square root of the modular character of the minimal parabolic subgroup‎. ‎For unitarizable subquotients...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005